Multilinear Model Estimation with L 2-Regularization

نویسندگان

  • Frank R. Schmidt
  • Hanno Ackermann
  • Bodo Rosenhahn
چکیده

Many challenging computer vision problems can be formulated as a multilinear model. Classical methods like principal component analysis use singular value decomposition to infer model parameters. Although it can solve a given problem easily if all measurements are known this prerequisite is usually violated for computer vision applications. In the current work, a standard tool to estimate singular vectors under incomplete data is reformulated as an energy minimization problem. This admits for a simple and fast gradient descent optimization with guaranteed convergence. Furthermore, the energy function is generalized by introducing an L-regularization on the parameter space. We show a quantitative and qualitative evaluation of the proposed approach on an application from structure-from-motion using synthetic and real image data, and compare it with other works.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilinear Spectral Regularization for Kernel-based Multitask Learning

Recent research in machine learning witnessed a renewed interest in tensors. In particular, multilinear algebra has been leveraged to derive structured finite dimensional parametric models [1, 2]. In [3] these ideas have been generalized to reproducing kernel Hilbert spaces. The arising framework comprises existing problem formulations, such as tensor completion [4], as well as novel functional...

متن کامل

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

Automatic estimation of regularization parameter by active constraint balancing method for 3D inversion of gravity data

Gravity data inversion is one of the important steps in the interpretation of practical gravity data. The inversion result can be obtained by minimization of the Tikhonov objective function. The determination of an optimal regularization parameter is highly important in the gravity data inversion. In this work, an attempt was made to use the active constrain balancing (ACB) method to select the...

متن کامل

Improved statistical power of the multilinear reference tissue approach to the quantification of neuroreceptor ligand binding by regularization.

A multilinear reference tissue approach has been widely used recently for the assessment of neuroreceptor-ligand interactions with positron emission tomography. The authors analyzed this "multilinear method" with respect to its sensitivity to statistical noise, and propose regularization procedures that reduce the effects of statistical noise. Computer simulations and singular value decompositi...

متن کامل

Multilinear Map Layer: Prediction Regularization by Structural Constraint

In this paper we propose and study a technique to impose structural constraints on the output of a neural network, which can reduce amount of computation and number of parameters besides improving prediction accuracy when the output is known to approximately conform to the low-rankness prior. The technique proceeds by replacing the output layer of neural network with the so-called MLM layers, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011